Metastable Failures in Distributed Systems

Nathan Bronson*
Rockset, Inc.

Aleksey Charapko

University of New Hampshire

Abstract

We describe metastable failures—a failure pattern in dis-
tributed systems. Currently, metastable failures manifest
themselves as black swan events; they are outliers because
nothing in the past points to their possibility, have a severe
impact, and are much easier to explain in hindsight than to
predict. Although instances of metastable failures can look
different at the surface, deeper analysis shows that they can
be understood within the same framework.

We introduce a framework for thinking about metasta-
ble failures, apply it to examples observed during years of
operating distributed systems at scale, and survey ad-hoc
techniques developed post-factum for making systems re-
silient to known metastable failures. A systematic approach
for building systems that are robust against unknown meta-
stable failures remains an open problem.

ACM Reference Format:

Nathan Bronson, Abutalib Aghayev, Aleksey Charapko, and Timo-
thy Zhu. 2021. Metastable Failures in Distributed Systems. In Work-
shop on Hot Topics in Operating Systems (HotOS "21), May 31-June
2, 2021, Ann Arbor, MI, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3458336.3465286

1 Introduction

Robustness is a fundamental goal of distributed systems re-
search. Yet despite years of advances, there are still many
system outages in the wild. By reviewing experiences from
a decade of operating hyperscale distributed systems, we
identify a class of failures that can disrupt them, even when
there are no hardware failures, configuration errors,

“Formerly at Facebook, Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8438-4/21/05...$15.00
https://doi.org/10.1145/3458336.3465286

221

Abutalib Aghayev

The Pennsylvania State University

Timothy Zhu

The Pennsylvania State University

Vulnerable

Trigger

Sustaining
Effect

eCOV
ery Metastable

Figure 1: States and transitions of a system experienc-
ing a metastable failure.

or software bugs. These metastable failures have caused
widespread outages at large internet companies, lasting from
minutes to hours. Paradoxically, the root cause of these fail-
ures is often features that improve the efficiency or reliability
of the system.

In this work, we define the metastable failure pattern,
describe real-world examples and the common traits among
them, survey ad-hoc industry practices developed for dealing
with metastability, and propose new research directions for
systematically addressing these failures.

Metastable failures occur in open systems with an uncon-
trolled source of load where a trigger causes the system to
enter a bad state that persists even when the trigger is
removed. In this state the goodput (i.e., throughput of useful
work) is unusably low, and there is a sustaining effect—often
involving work amplification or decreased overall efficiency—
that prevents the system from leaving the bad state. Drawing
from the definition of metastability in physics [19], we call
this bad state a metastable failure state. Failures that resolve
when the trigger is removed, such as a denial-of-service
attack [8], limplock [9], or livelock [2], are not metastable.
Leaving a metastable failure state requires a strong corrective
push, such as rebooting the system or dramatically reducing
the load.

The lifecycle of a metastable failure involves three phases,
as shown in Figure 1. A system starts in a stable state. Once
the load rises above a certain threshold—implicit and invisible—
the system enters a vulnerable state. The vulnerable system is
healthy, but may fall into an unrecoverable metastable state
due to a trigger. The vulnerable state is not an overloaded

https://doi.org/10.1145/3458336.3465286
https://doi.org/10.1145/3458336.3465286

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

state; a system can run for months or years in the vulnerable
state and then get stuck in a metastable state without any in-
crease in load. In fact, many production systems choose
to run in the vulnerable state all the time because it
has much higher efficiency than the stable state. When
one of many potential triggers causes the system to enter the
metastable state, a feedback loop sustains the failure, causing
the system to remain in the failure state until a big enough
corrective action is applied. In the most severe outages, the
feedback loop is contagious, causing portions of the system
that weren’t exposed to the trigger to enter the failure state
as well. It is common for an outage that involves a metastable
failure to be initially blamed on the trigger, but the true root
cause is the sustaining effect.

Metastable failures have a disproportionate impact on hy-
perscale distributed systems. The sustaining effect can cause
an issue to spread across shard, cluster, and even datacenter
boundaries. The strength of many feedback loops is propor-
tional to the scale, so they can slip past even a robust testing
and deployment regime. The difference between the trigger
and the sustaining effect makes it hard to discover the correct
response, increasing the time to recovery. Shedding load as
a corrective action can be a further source of disruption for
users.

This paper focuses on distributed systems because even a
single metastable failure can have a large impact, but the pat-
tern is not limited to this domain. For example, the convoy
phenomenon of locks [5] is an early instance of a metasta-
ble failure occurring in a standalone system. The field of
distributed systems is rich with techniques for ensuring reli-
ability in the presence of fail-stop hardware failures [10, 15],
fail-slow hardware failures [9], scalability failures [16], and
software bugs [1], among others. However, to the best of
our knowledge, there has not been any work that identifies
metastable failures as a pattern and introduces a framework
within which they can be understood. Although SRE folk-
lore discusses instances of such failures and solutions to
them [4, 11], the responses are failure-specific. More im-
portantly, the study of these large-scale failures have so far
eluded academia. The goal of this vision paper is to change
that by (i) establishing metastable failures as a class of fail-
ures, (ii) analyzing their common traits and characteristics,
and (iii) proposing new research directions in identifying,
preventing, and recovering from metastable failures.

2 Metastable Failure Case Studies

Metastable failures manifest in a variety of ways, but the
sustaining effect is almost always associated with exhaustion
of some resource. Surprisingly, feedback loops associated
with resource exhaustion are often created by features that
improve efficiency and reliability in the steady state.

222

Bronson, et al.

300 /\

2501 S e DB max QPS
% 200 ——-DB max QPS/2
S 150 fm——mm o
_§~ — Stable
g 100 — Vulnerable
© 50 —— Metastable

0 K AJ Transition
0 100 200 300
Load (QPS)

Figure 2: Goodput of an idealized web application with
a database backend in stable, vulnerable, and metasta-
ble states.

This section presents simplified versions of a represen-
tative subset of the many metastable failures that we have
observed in production. Although these cases are easy to
explain in retrospect, none of them were identified ahead of
time, and some of them recurred many times—over months
to years—before being fully resolved.

2.1 Request Retries

One of the most common failure-sustaining mechanisms
is request retries. Retrying failed requests is widely used to
mask transient issues. However, it also results in work am-
plification, which can lead to additional failures.

Consider a stateless web application that operates by query-
ing a database server. The database responds to queries under
100 ms if the queries-per-second (QPS) is below 300, but at
higher loads, the latency becomes an order of magnitude
worse. A user request to the web application results in one
query to the database and another retry query if the first
query does not return in 1s.

Assume the web application is operating normally while
receiving 280 QPS and a 10s outage affects the network
switch between the application and database. When connec-
tivity is restored, all the packets lost during the outage are
retransmitted, including requests and retries sent during the
10 s. This huge surge of requests will overload the database,
causing its latency to rise. So long as latency is high, client
queries will continue at 560 QPS due to retries. This will
prevent the database from recovering. The web application
in this state has no goodput because every database query
times out. The system is now in a metastable failure state. It
will remain there until the load is significantly reduced or
the retry policy is changed.

Figure 2 illustrates the goodput of this system based on
the web application load. The system starts in the stable state
and stays in it as long as the load is below 150 QPS. While in

Metastable Failures in Distributed Systems

the stable state, a trigger will not move the system into the
metastable failure state because the database can handle the
workload even with the work amplification of retries. Once
the load exceeds 150 QPS, however, the system enters a vul-
nerable state where a trigger can move it into the metastable
state. For example, in Figure 2, a trigger occurs when the
load is = 280 QPS, and the system moves into the metastable
state. Recovery from the metastable state requires reducing
the web application load to under 150 QPS or limiting retries
to less than 20 QPS.

Closely related to request retry is request failover, where
a failure detector is used to route requests to only healthy
replicas. Failover doesn’t result in request amplification on
its own because each request is processed only once, but
it can cause failures to cascade. When replicas are sharded
differently, a particularly pernicious form of this contagion
causes a transient point failure to grow into a total outage.

2.2 Look-aside Cache

Caching can also make architectures vulnerable to sustained
outages, especially look-aside caching. Consider a system
like that of § 2.1, but where the application uses a look-aside
cache such as memcached [3] to cache database results. To
keep the math simple, we’ll omit retries from this example.
Assuming a 90% hit-rate and the same database as before,
the web application can now handle 3,000 QPS because only
1 out of 10 user requests result in a database query. However,
loads above 300 QPS are in the vulnerable state since every
request may need to contact the database in the worst case.
If cache contents are lost in the vulnerable state, the database
will be pushed into an overloaded state with elevated latency.
Unfortunately, the cache will remain empty since the web
application is responsible for populating the cache, but its
timeout will cause all queries to be considered as failed. Now
the system is trapped in the metastable failure state: the
low cache hit rate leads to slow database responses, which
prevents filling the cache. In effect, losing a cache with a 90%
hit-rate causes a 10X query amplification.

2.3 Slow Error Handling

The mechanisms described so far amplify the number of re-
quests when the system encounters a failure, but metastable
failure states can also arise when the processing of a request
is less efficient in the failure state. A recurring example of
this is slow error handling.

Success paths in performance-critical applications are well
optimized. The fast path for requests might require only
RAM access, for example, with engineers working even to
optimize TLB miss rates. The failure path, on the other hand,
is typically coded to make debugging easier. It might capture
a stack trace (using lots of CPU), obtain the name of the client
using a DNS lookup (blocking a thread), record a detailed

223

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

message on the local disk (occasionally blocking on disk
writes even with buffered I/0), and also send information to a
centralized logging service (consuming network bandwidth).

If a trigger causes the system to run out of any of the
resources that are used by the error handling code, then
error handling will make the shortage more severe. We've
seen many examples where this effect is strong enough to
cause self-sustaining error states. Again, the only immediate
solution is to reduce the load.

2.4 Link Imbalance

Metastable failures can hinge on a confluence of implementa-
tion details, such that no one person has enough knowledge
to figure it out. This can make them challenging to diagnose
even after they appear.

In this example [6], some of the network hops between a
large cluster of read-through cache servers and a large cluster
of database servers used aggregated links—multiple physical
cables connecting the same pair of switches to provide in-
creased bandwidth. Across such a link, a TCP connection is
deterministically assigned to one cable using a hash of the
source and destination port and IP address. When averaged
across many connections, the load is evenly distributed.

This system, however, turns out to be vulnerable to a meta-
stable failure where all the traffic is assigned to a single
link. The targeted link doesn’t have sufficient bandwidth,
which leads to massive packet loss and system unavailability.
Depending on which clusters are affected, the impact could
be localized or site-wide.

On the surface, this failure appears impossible. The switch
(i) uses a deterministic hash function to compute the hash of
source IP, source port, destination IP, and destination port,
and (ii) assigns the connection to one of the links based
on the hash value. Therefore, the switch cannot force the
traffic through a specific link. Similarly, the ports are chosen
randomly, independently, and without knowledge of the hash
function, so the hosts cannot pick the link. What’s going on?

It turns out that the sustaining effect matches the same
pattern as the other metastable failures we’ve examined.
The key is that there is a mechanism by which resource
exhaustion on the congested link causes it to be preferred
for future requests, leading to more congestion.

In this scenario, the caches in this system are subject to
sudden spikes of cache misses to a single shard, such as when
a user comes online. Each cache server has a dynamic pool
of database connections, each of which can process a single
query at a time. The cluster of incoming cache misses is sent
in parallel from a single cache server to a single database
server, each across their own connection. This sets up a race:
if one of the network links is congested, then the queries that
get sent across that link will reliably complete last. This inter-
acts with the connection pool’s MRU policy where the most

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

recently used connection is preferred for the next query. As a
result, each spike of misses rearranges the connection
pool so that the highest-latency links are at the top of
the stack. Because the number of concurrent misses is much
lower in the steady state than during the miss spike, the vast
majority of future queries would be routed to the congested
link. This completes the feedback loop. If one member of a
link group experiences a queueing delay, then all the traffic
between the cache cluster and the database cluster shifts to
the congested link, ensuring it remains overloaded.

This metastable failure defied explanation for more than
two years, causing multiple outages. It was root-caused to
many triggers, and prematurely declared fixed several times.
Attempts to resolve it included trying switches from differ-
ent vendors and adding a firmware feature to dynamically
change the hash algorithm. Solving it required a joint effort in
which engineers from several layers of the stack exchanged
implementation details; the problem could not be understood
by the application layer using a simplified model of the net-
work, and it could not be solved by the network layer using a
simplified model of the application. Although this metastable
failure was hard to diagnose, the fix was a single line that
changed the connection pool’s policy.

3 Approaches to Handling Metastability

In this section, we describe techniques for preventing known
metastable failures that have caused outages.

Trigger vs. Root Cause: We consider the root cause of a
metastable failure to be the sustaining feedback loop, rather
than the trigger. There are many triggers that can lead to
the same failure state, so addressing the sustaining effect is
much more likely to prevent future outages.

Change of Policy during Overload: One way to weaken
or break the feedback loops is to ensure that goodput remains
high even during overload. This can be done by changing
routing and queueing policies during an overload. For ex-
ample, we might disable failover and retries or set a retry
budget [4], switch to LIFO scheduling to allow some requests
to meet their deadline, reduce internal queue sizes, enforce
priorities during overload [12], shed load by rejecting a frac-
tion of requests or clients, or even use the Circuit Breaker
pattern to block all requests [14]. A major challenge with
adaptive policies is coordination, as retry and failover deci-
sions are made by each client. The best decisions are made
using global information, but the communication required
to distribute status information can be a new way in which
a failure can have a sustaining effect.

Another fundamental challenge for adaptive policies lies
in accurately differentiating persistent overload from load
spikes. We have found it effective to measure the minimum
queueing latency over a sliding window, as in Codel [13],
for the internal work queues of the server [7]. A small value

224

Bronson, et al.

means that the queue was drained at some point during
the window, indicating that even if the queue is large, it
is probably a manageable spike. If the minimum queueing
latency is large over the entire window, then we switch
to a server policy designed to maximize goodput and add
information about the overload to all responses.

Prioritization: Another way to retain efficiency when
a resource is exhausted is to use priorities. For example,
in the retry case study (§ 2.1), using a lower priority for
retried queries would avoid perpetuating the feedback loop—
future user queries would be prioritized and succeed, thus
eliminating the retries.

The challenge here is that priority systems only manage
some of the resources in the system, and they can allow or
even encourage policies with high work amplification. In one
extreme case, a geo-distributed system that added additional
retries and failover destinations to improve its steady-state
reliability resulted in a worst-case work amplification of over
100x. Even though it was protected by a sophisticated end-
to-end priority system that included memory, CPU, threads,
and networking resources, it eventually fell victim to a meta-
stable failure involving a backend service used by only a few
percent of requests.

Perhaps more importantly, not all architectures are equally
amenable to implementing a priority system, which takes
experience to realize. For example, in the look-aside cache
case (§ 2.2), when in a metastable state, filling the cache
should have a higher priority than serving the clients. This
prioritization is unenforceable with a look-aside cache but
trivial with a read-through cache. A read-through cache can
have a permissive timeout for database queries; although the
web application will give up on the request, the cache will
still be filled, which steadily increases the hit rate until the
system is healthy again.

Another lesson is that the software structure encodes im-
plicit priorities. For example, a staged request processing
architecture that deserializes as many requests as possible
before processing them encodes that deserializing is more
important than processing. Preserving goodput during over-
load, on the other hand, requires the opposite policy.

Stress Tests: Stress tests on a replica of a system may
help identify metastable failures that occur at a small scale.
Unfortunately, the strength of the feedback loop is affected
by constant factors that vary with scale, so small scale tests
don’t provide much confidence that a problem cannot ap-
pear at full scale. The alternative is to carefully rebalance
production traffic to stress a portion of the production infras-
tructure, as in Kraken [18], with engineers ready to intervene
if any anomalies occur. The tooling to support this kind of
production stress testing requires a substantial amount of
engineering work, but once it is in place it also enables safely
draining the target clusters if a metastable failure occurs.

Metastable Failures in Distributed Systems

Organizational Incentives: Optimizations that apply
only to the common case exacerbate feedback loops because
they lead to the system being operated at a larger multiple
of the threshold between stable and vulnerable states. For
example, an improved cache eviction algorithm will reduce
average database load, which makes it seem desirable to
reclaim database resources. This kind of change is easy to
measure and reward, but it will be a false economy if the
system can no longer recover from cache loss. Incentivizing
application changes that reduce cold cache misses, on the
other hand, yields a true capacity win.

Fast Error Paths: Optimizing the success paths is a well-
known practice. We think distributed systems should also
have highly-optimized error paths. One pattern for isolating
error handling is to send failures to a dedicated error logging
thread via a bounded-size lock-free queue. If the queue over-
flows then errors are only reflected in a counter, reducing
the per-failure overhead dramatically. Similarly, expensive
information like stack traces can be throttled; when there are
many errors, a sample is enough for diagnosing the problem.

Outlier Hygiene: When investigating a metastable fail-
ure from production, we often find that the same root cause
manifests earlier as latency outliers or a cluster of errors.
Even when the feedback loop isn’t strong enough to cause
the problem to grow unbounded, it may still cause the trigger
to reverberate enough times to stand out.

Autoscaling: Elastic systems are not immune to metasta-
ble failure states (§ 4), but scaling up to maintain a capacity
buffer reduces the vulnerability to most triggers.

4 Discussion and Research Directions

Can you predict the next one of these [metastable failures],
rather than explain the last one? -VP’s plea to an engineer
As many production systems operate in the vulnerable
state for efficiency reasons, it is important to go beyond a
simple understanding of metastability and dealing with fail-
ures in an ad-hoc manner. We must learn to operate in the
vulnerable state by achieving two separate goals: (i) design-
ing systems that avoid metastable failures while operating
efficiently, and (ii) developing mechanisms to recover from
metastable failures as quickly as possible in cases that cannot
be avoided. The first goal requires a comprehensive approach
that ranges from detecting vulnerable states and potential
failures to curtailing the impact of sustaining effects. Detect-
ing vulnerable states is difficult due to the sheer size of the
systems and all the different processes affecting them. Pre-
dicting failures is even harder since we need to identify the
vulnerable state correctly and foresee the potential trigger
and its intensity. Many existing solutions (§ 3) already try to
limit the impact of work amplification and sustaining effects.
These approaches, however, are often a reaction to previous
failures and are not applied systematically across systems.

225

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

The first goal tries to avoid disaster; the second handles
clean-up. One approach is to develop recovery techniques
that can quickly react to the failure, identify it as a metastable
failure, and perform load reduction. Additionally, methods
to improve the goodput of the system in the failure state
can speed up the recovery by increasing the size of a stable
state. Reproducing the failure post-mortem in a controlled
environment can provide a lot of value by allowing additional
data to be gathered and enabling validation of fixes.

Further research is needed to reach these goals. This sec-
tion presents unifying themes from our analysis of metasta-
ble failures, which point to possible research directions.

How can we design systems that avoid metastable failures?
Specifically, can we develop software frameworks for build-
ing distributed systems that make problematic feedback loops
impossible, or at least discoverable?

Work Amplification: A unifying theme across metasta-
ble failures is that the sustaining effect typically involves
work amplification, which refers to extra (often wasted) work
that is performed in the atypical case. Designing systems
to avoid metastable failures will require a systematic under-
standing of where the largest instances of work amplification
occur. Ideally, systems will be designed to upper bound the
degree of work amplification.

Feedback Loops: There are many plausible feedback loops
in a complex system, yet only a few cause problems. The
strength of the loop depends on a host of constant factors
from the environment, such as cache hit rate. We don’t need
to eliminate every loop, just weaken the strongest ones.

What are systematic techniques for accurately identifying vul-
nerabilities in existing systems?

Characteristic Metric: Another recurring pattern when
analyzing metastable failures is that there is often a metric
that is affected by the trigger and that only returns to normal
after the metastable failure resolves. We call such a metric
characteristic and visualize it as a dimension in which it is
unsafe to significantly deviate. There may be more than one
suitable metric for a particular failure mode. In the retry
(§ 2.1) and look-aside cache (§ 2.2) cases, we could choose
database latency or the fraction of requests that timeout.
Both of these metrics will spike during the request surge that
follows a network outage, and they won’t recover until after
the metastable failure is resolved. A characteristic metric can
give insight into the state of the feedback loop (the memory
component of a metastable failure) directly or indirectly.

Characteristic metrics we have observed in production are
queueing delay, request latency, load level, working set size,
cache hit rate, page faults, swapping, timeout rates, thread
counts, lock contention, connection counts, and operation
mix. We expect that research into a systematic way to find
unknown metastable failures will involve identifying the

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

important characteristic metrics of a system, which is chal-
lenging even on its own. Some metrics, like queueing delay,
are much more resilient to changes in the workload and exe-
cution environment than others, like queries per second.

Can we give a meaningful estimate of the probability that a
novel metastable failure will occur?

Warning Signs: Once a characteristic metric is identified,
it can be used to identify a range of safe values. Exiting the
range triggers an alarm and maybe an automated interven-
tion. The idea of alerting on internal metrics is not new, but
the framework of metastability can allow us to learn the right
metrics and thresholds without experiencing major outages.

Hidden Capacity: A helpful concept is that of hidden
capacity, which is the boundary between the stable and vul-
nerable states of Figure 1. In the stable state a trigger can
still cause errors, but they will resolve as soon as the trigger
is removed. Hidden capacity is the limit at which the system
will self-heal. Advertised capacity, in contrast, is the limit
at which the system will be in a vulnerable state. Hidden
capacity is determined by the behavior and resource usage
of the system when it is in a failure state, so it is difficult to
measure during normal operation. In the look-aside cache
case (§ 2.2), the advertised capacity of the web application
is 3,000 QPS, while the hidden capacity is 300 QPS because
even if the cache server reboots, the database server can
handle 300 QPS by itself without leaving the stable state.

Characteristic metrics are central to experimentally mea-
suring hidden capacity. If we run a stress test at some load
level, apply a trigger that causes the characteristic metric to
spike, and observe that the system quiesces without inter-
vention, then we know that the load level is below the hidden
capacity (of this particular failure mode). Hidden capacity
can also be estimated indirectly by measuring or deriving
work amplification in the metastable state.

Trigger Intensity: Another useful concept is the trigger
intensity. The fate of a system is not black-and-white in the
vulnerable state; there is a variation in the size of the trigger
that will cause a feedback loop. For example, in the retry
case (§ 2.1), the system can recover from a much larger spike
if the load is 151 QPS (near the hidden capacity) rather than
299 QPS (near the advertised capacity). Small triggers are
more frequent than large ones, so it is useful to understand
the relationship between trigger size and characteristic met-
ric. It’s well known that distributed systems are harder to
operate when they operate near their maximum advertised
capacity. We observe that this is often the case because such
systems are vulnerable to even very weak triggers.

Can we resolve metastable failures by leveraging elastic cloud
infrastructures?

Reconfiguration Cost: Elastic systems deliver extra ca-
pacity on demand, which ideally has the same per-server

226

Bronson, et al.

effect as reducing client load. Unfortunately, unless a stateful
system is specifically designed to provide zero-impact elas-
ticity, reconfiguration will reduce capacity in the short term.
Existing members must perform state transfers and metadata
updates on top of their normal workload. Although reconfig-
uration will eventually break a feedback loop, the timeframe
may be too long to be a viable recovery strategy. Research
on reconfiguration during resource exhaustion could lead to
improvements in practical reliability.

How can we accurately model or reproduce metastable failures
without a full-scale replica, or from specifications?

As illustrated by the example in § 2.4, the cause of metasta-
bility can easily be obscured by abstraction or by aggregate
statistics, so simplified models are likely to be insufficient.
Distributed systems are composed of a myriad of queues,
from an SSD’s I/O scheduler to the queues in a network
switch, any of which may need to be adjusted to account for
reduced scale. This makes small-scale reproduction of com-
plex metastable failures challenging. The queues are very
high performance, so precise simulation is painfully slow.

Rather than aiming for perfect fidelity, we think that
progress on this front will come from controlling a test envi-
ronment so that its characteristic metrics match those from
full scale environments. When using a synthetic workload
to trigger a metastable failure, the load generator must not
exhibit coordinated omission [17]. Proving the absence of a
particular metastable failure may be possible by modeling
worst case behavior or an adversarial environment.

How does an implementation or configuration change affect
the strength of a sustaining effect?

Understanding how the constant factors of feedback loops
are affected by system changes would be impactful in several
ways. It would give us insight into how to address found is-
sues; it would give us confidence that system changes would
not create a vulnerability; and it would be a very powerful
tool when trying to reproduce issues at reduced scale.

5 Conclusion

Metastable failures are a class of failures that impact dis-
tributed systems. They naturally arise from optimizations
and policies that improve behavior in the common case. They
are an emergent behavior rather than a logic bug—one can-
not write a unit or integration test to trigger them. As such,
they are rare, but can have catastrophic effects. We have
presented a few of the cases we have observed in production
over the years, along with our analysis and some techniques
to counter known metastable failures. Our hope is that this
paper starts a discussion on this failure pattern in the com-
munity to better understand them and improve our ability to
build systems that are robust to unknown metastable failures.

Metastable Failures in Distributed Systems

References

[1] Joe Armstrong. Making reliable distributed systems in the presence of

(2]

[3
[4

[l

[10]
(11]

(12]

software errors. PhD thesis, 2003.

E.A. Ashcroft. Proving assertions about parallel programs. Journal of
Computer and System Sciences, 10(1):110-135, 1975.

Memcached authors. Memcached. https://memcached.org/, 2021.
Betsy Beyer, Jennifer Petoff, Niall Richard Murphy, and Chris Jones.
Site Reliability Engineering: How Google Runs Production Systems.
https://sre.google/sre-book/table-of-contents/, 2016.

Mike Blasgen, Jim Gray, Mike Mitoma, and Tom Price. The Convoy
Phenomenon. SIGOPS Oper. Syst. Rev., 13(2):20-25, April 1979.
Nathan G Bronson. Solving the Mystery of Link Imbalance: A
Metastable Failure State at Scale. https://engineering.fb.com/2014/11/
14/production-engineering/solving-the-mystery-of-link-imbalance-
a-metastable-failure-state-at-scale/, 2014.

Nathan G Bronson. Balancing Multi-Tenancy and Isolation at 4 Billion
QPS. https://www.youtube.com/watch?v=dATHiDHS3Mo, 2015.
Cloudflare. What is a DDoS Attack? https://www.cloudflare.com/
learning/ddos/what-is-a-ddos-attack/, 2021.

Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat
Patana-anake, and Haryadi S. Gunawi. Limplock: Understanding the
Impact of Limpware on Scale-out Cloud Systems. In Proceedings of the
4th Annual Symposium on Cloud Computing, SOCC ’13, New York, NY,
USA, 2013. Association for Computing Machinery.

Leslie Lamport. The Part-Time Parliament. ACM Trans. Comput. Syst.,
16(2):133-169, May 1998.

Ben Maurer. Fail at Scale: Reliability in the Face of Rapid Change.
ACM Queue, 13(8):30-46, September 2015.

Arif Merchant, Mustafa Uysal, Pradeep Padala, Xiaoyun Zhu, Sharad
Singhal, and Kang Shin. Maestro: Quality-of-service in large disk

227

[13]

[14]

[15]

[16]

[17]
(18]

[19]

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

arrays. In Proceedings of the 8th ACM international conference on
Autonomic computing (ICAC), pages 245-254, New York, NY, USA,
2011.

Kathleen Nichols and Van Jacobson. Controlling queue delay: A
modern agm is just one piece of the solution to bufferbloat. Queue,
10(5):20-34, May 2012.

Michael Nygard. Release It! Design and Deploy Production-Ready Soft-
ware. Pragmatic Bookshelf, 2007.

Diego Ongaro and John Ousterhout. In Search of an Understandable
Consensus Algorithm. In Proceedings of the 2014 USENIX Conference on
USENIX Annual Technical Conference, USENIX ATC’14, page 305-320,
USA, 2014. USENIX Association.

Cesar A. Stuardo, Tanakorn Leesatapornwongsa, Riza O. Suminto,
Huan Ke, Jeffrey F. Lukman, Wei-Chiu Chuang, Shan Lu, and Haryadi S.
Gunawi. ScaleCheck: A Single-Machine Approach for Discovering
Scalability Bugs in Large Distributed Systems. In 17th USENLX Confer-
ence on File and Storage Technologies (FAST 19), pages 359-373, Boston,
MA, February 2019. USENIX Association.

Gil Tene. How NOT to Measure Latency. https://www.youtube.com/
watch?v=1J8ydIuPFeU, 2015.

Kaushik Veeraraghavan, Justin Meza, David Chou, Wonho Kim, Sonia
Margulis, Scott Michelson, Rajesh Nishtala, Daniel Obenshain, Dmitri
Perelman, and Yee Jiun Song. Kraken: Leveraging live traffic tests to
identify and resolve resource utilization bottlenecks in large scale web
services. In Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, OSDI’'16, page 635-650, USA, 2016.
USENIX Association.

Wikipedia. Metastability. https://en.wikipedia.org/wiki/Metastability,
2021.

https://memcached.org/
https://sre.google/sre-book/table-of-contents/
https://engineering.fb.com/2014/11/14/production-engineering/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
https://engineering.fb.com/2014/11/14/production-engineering/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
https://engineering.fb.com/2014/11/14/production-engineering/solving-the-mystery-of-link-imbalance-a-metastable-failure-state-at-scale/
https://www.youtube.com/watch?v=dATHiDHS3Mo
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/
https://www.youtube.com/watch?v=lJ8ydIuPFeU
https://www.youtube.com/watch?v=lJ8ydIuPFeU
https://en.wikipedia.org/wiki/Metastability

	Abstract
	1 Introduction
	2 Metastable Failure Case Studies
	2.1 Request Retries
	2.2 Look-aside Cache
	2.3 Slow Error Handling
	2.4 Link Imbalance

	3 Approaches to Handling Metastability
	4 Discussion and Research Directions
	5 Conclusion
	References

